DEPARTMENT OF CHEMISTRY

M.Sc. (PREVIOUS) CHEMISTRY-II-SEMESTER PAPER I: GENERAL CHEMISTRY-II

(w.e.f. 2021-2022 admitted batch)

Time: 3 Hours Answer ALL questions Maximum marks: 80 (5X16 =80 marks)

(1) (a) i) Derive Schrodinger wave equation?

ii) Explain the postulates of Quantum mechanics

Or

- (b) i) Write notes on Hermitian operator and its properties
 - ii) Explain normalization and orthogonalisation
- (2) (a) i) Solve the Schrodinger wave equation for a particle in a onedimensional box.
 - ii) Write the factors influencing color

Or

- (b) i) Derive the Schrodinger wave equation for a simple harmonic oscillator
 - ii) Describe the concept of tunnelling.
- (3) (a) i) Explain the solutions of R(r), θ(θ) and Φ(φ) equations of hydrogen atom
 ii) Explain probability density in orbitals

O

- (b) i) Explain the time independent perturbation theory to evaluate the ground state energy of helium atom.
 - ii) Application of above to ground state energy of hydrogen and helium atom
- (4) (a) i) What is variation principle. Write its application to calculation of ground state energy of harmonic oscillator.
 - ii) Compare Perturbation and variation theorems.

Or

- (b) i) Explain Hartee-Fock self-consistent field method for multi electron atoms.
 - ii) Write a note on Density functional theory (DFT)
- (5) (a) i) Explain quantum mechanical approach of molecular orbital theory. ii) Calculate the ionic and covalent bond contributions in hydrogen molecule

Or

- (b) i) Discuss the valence bond approach of H₂ molecule.
 - ii) Write the electronic transitions in the hydrogen molecule.

DEPARTMENT OF CHEMISTRY

M.Sc. (PREVIOUS) CHEMISTRY-II-SEMESTER

Semester-II

Paper- II: Inorganic Chemistry-II

(Effective from 2021-2022 admitted batch)

Time: 3 hours Answer ALL questions Max. Marks: 80 (5x16=80 Marks)

- a) (i)Discuss the structure and magnetic property of Cu₂(RCOO)₄ (H₂O)₂.
 - (ii)) Write a note on Chevrel phases

OR

- (b) (i) Discuss the preparation of, structures of and bonding in Re₂Cl₈²-.
 - (ii) Describe the structures of hexanuclear metal clusters.
- 2. a) (i) Explain the synthesis, structure and reactions of metal carbonyls.
 - (ii) Explain Isolobal relationship with suitable examples.

OR

- b) (i) Describe the preparation of, structure of and bonding in ferrocene.
 - (ii) What is 18 electron rules? Illustrate with suitable examples
- 3. a) (i) Explain the factors affecting the stability of coordination compounds.
 - (ii) Distinguish between stepwise and overall stability constants.

OR

- (b) (i) Describe the Irwing -William's series, Pearson's theory of hard and soft acids and bases (HSAB),
- (ii) What is chelate effect and discuss its thermodynamic origin
- 4. a) (i) Discuss a spectrophotometric method for the determination of binary formation constant of a metal complex.
 - (ii) What are inert and labile complexes?

OR

- (b) (i) Describe the pH metric method for the determination of stability constants.
- (ii) Explain inert and labile complexes by using crystal field stabilization energies?
- 5. a) (i) What is acid hydrolysis reactions? Discuss Factors affecting acid hydrolysis reactions
 - (ii)) What is trans effect? Distinguish between the trans effect and trans influence.

OR

- b) (i) Give an account of base hydrolysis of Cobalt (III) complexes.
- (ii) Discuss the various factors affecting the rates of substitution reactions of octahedral complexes.

DEPARTMENT OF CHEMISTRY

M.Sc. (PREVIOUS) CHEMISTRY-II-SEMESTER Semester -II

Paper- III: Organic Chemistry-II

(Effective from 2021-2022 admitted batch)

Time: 3 hours Answer ALL questions (5x16=80 Marks)

Max. Marks: 80

- 1. a.(i) Explain Aromaticity and Anti aromaticity give examples.
 - (ii) Write a note on Von-Ritcher rearrangement

(or)

- b. (i) Describe Aromatic Nucleophilic Substitution reactions give examples.
- (ii) Write a note on Non-benzenoid aromatic compounds and Annulenes.
- 2 a. (i)Write any two preparations and reactivity of carbocation.
 - (ii) Write a note on Stork enamine reaction.

(or)

- b. (i)Explain carbanion and nitrene
- (ii) Briefly explain Mannich Reaction with applications.
- a. (i) Explain Pinacol-pinacolone rearrangement give examples.
 - (ii) Describe mechanism and applications of Beckmann rearrangement.

(or)

- b. (i) Discuss about Baeyer-villager rearrangement.
- (ii) Write a note on Favorskii rearrangement.
- 4 a. (i)Write the Woodward-Fieser rules for conjugated dienes.
 - (ii) Explain types of molecular vibrations in Infrared Spectroscopy.

(or)

- b(i)Describe factors affecting the chemical shift.
- (ii) Give the fragmentation pattern of alcohols.

- 5 a. (i) Write the synthesis of nicotine
 - (ii) Explain Merrifield solid phase synthesis.

(or)

- b. (i) Write about Primary, secondary and tertiary structures of proteins.
- (ii) How do you differentiate RNA and DNA

DEPARTMENT OF CHEMISTRY

M.Sc. (PREVIOUS) CHEMISTRY-II-SEMESTER Semester -II

Paper- IV: PHYSICAL CHEMISTRY-II

Max. Marks: 80

(Effective from 2021-2022 admitted batches)

Time: 3 hours Answer ALL questions (5x16=80 Marks)

1. (a) (i)Derive Bragg's equation

(ii) Explain the theories of superconductivity

(or)

- (b) (i)Describe the different methods of measurement of magnetic susceptibility.
 - (ii) Write a brief note on semiconductors.
- 2. (a) (i) Give the the classification of polymers with examples.
 - (ii) What are the factors influencing glass transition temperature.

(or)

- (b) (i) How is molecular weight of polymers determined by osmometry and light scattering methods.
 - (ii) Write a brief note on kinetics of free radical polymerization.
- 3. (a) (i)Explain Debye-Huckel theory of strong electrolytes
 - (ii) Discuss the effect of complexation on redox potential with examples? (or)
 - (b) (i)Derive an expression for EMF of concentration cell without transference.
 - (ii) Discuss the important features of Debye-Huckel limiting law.
- 4 (a) (i) Derive Bulter- Volmer equation
 - (ii) Explain the Stern model for double layer.

(or)

- (b) (i) Explain in detail about polarography.
 - (ii)Discuss important features of Gouy-Chapman diffuse charge model and Helmholtz parallel plate model
- 5. (a) (i) Derive Stern-Volmer equation
 - (ii) State and explain Franck-Condon principle

(or)

- (b) (i) Define quantum yield and explain its experimental method determination.
 - (ii) Discuss the mechanism of photo addition and photo isomerization with examples

32 of 32